

Акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях»

(АО «Концерн Росэнергоатом»)

ПРИКАЗ

27.03.2019

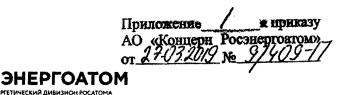
Москва

№ *9/409-1*7

О введении в действие Изменения № 1 к СТО 1.1.1.02.013.0715-2016 и Изменения № 1 к ТИ 1.2.1.02.999.0048-2016

В целях совершенствования ведения водно-химического режима на АЭС с РБМК-1000, ужесточения норм качества теплоносителя, предотвращения повторного выявления областей для улучшения при проведении миссий ОСАРТ на АЭС разработаны Изменение № 1 к СТО 1.1.1.02.013.0715-2016 «Воднохимический режим основного технологического контура и вспомогательных систем атомных электростанций с реакторами РБМК-1000. Нормы качества рабочей среды и средства их обеспечения», введенному в действие приказом АО «Концерн Росэнергоатом» от 25.08.2016 № 9/1059-П (далее – Изменение № 1 к СТО 1.1.1.02.013.0715-2016, приложение № 1), и Изменение ТИ 1.2.1.02.999.0048-2016 «Ведение водно-химического режима на атомных электрических станциях с реактором РБМК-1000. Типовая инструкция», введенной в действие приказом АО «Концерн Росэнергоатом» от 04.03.2016 (далее ТИ 1.2.1.02.999.0048-2016, № 9/259-П Изменение No 1 приложение № 2).

На основании изложенного


ПРИКАЗЫВАЮ:

- 1. Ввести в действие с 29.04.2019:
- 1.1. Изменение № 1 к СТО 1.1.1.02.013.0715-2016.
- 1.2. Изменение № 1 к ТИ 1.2.1.02.999.0048-2016.
- 2. Заместителям Генерального директора директорам филиалов АО «Концерн Росэнергоатом» действующих атомных станций с РБМК-1000 принять Изменение № 1 к СТО 1.1.1.02.013.0715-2016 и Изменение № 1 к ТИ 1.2.1.02.999.0048-2016 к руководству и исполнению.
- 3. Департаменту планирования производства, модернизации и продления срока эксплуатации (Максимов Ю.М.) внести Изменение № 1 к СТО 1.1.1.02.013.0715-2016 и Изменение № 1 к ТИ 1.2.1.02.999.0048-2016 в

установленном порядке в Указатель технических документов, регламентирующих обеспечение безопасности на всех этапах жизненного цикла атомных станций (обязательных и рекомендуемых к использованию), разместить их электронные версии в каталоге «Указатель ТД Концерна» в АСУТД.

И.о. Генерального директора

А.А. Дементьев

Акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях»

(АО «Концерн Росэнергоатом»)

УТВЕРЖДАЮ

Заместитель Генерального директора --

директор по производству

и эксплуатации АЭС

А.А. Дементьев

«22»

2019

Изменение №1

к СТО 1.1.1.02.013.0715-2016 «Водно-химический режим основного технологического контура и вспомогательных систем атомных электростанций с реакторами РБМК-1000. Нормы качества рабочей среды и средства их обеспечения» (введен в действие приказом АО «Концерн Росэнергоатом» № 9/1059-П от 25.08.2016)

- 1. В разделе 2:
- 2.1 Обозначение и наименование «СТО 1.1.1.07.003.0368-2011 «Входной и эксплуатационный контроль ионитов на атомных электростанциях. Методики выполнения измерений» заменить на новое: «СТО 1.1.1.07.003.0368-2017 Входной и эксплуатационный контроль ионитов на атомных электростанциях. Методики измерений».
- 2.2 Обозначение и наименование «РД ЭО 0418-02 «Средства измерительной техники в составе систем химического контроля водного теплоносителя на атомных станциях. Общие технические требования» заменить на новое: «ОТТ 1.1.8.07.1141-2016 «Системы автоматизированного химического контроля водных сред на атомных станциях. Общие технические требования».
 - 2.3 Перечень нормативных ссылок дополнить новыми документами:

«РБ-002-16 Руководство по безопасности при использовании атомной энергии «Водно-химический режим атомных станций»;

- СТО 1.1.1.07.003.0252-2014 Лабораторный химический анализ водных сред атомных электростанций с реактором большой мощности канальным. Методики измерений;
- СТО 1.1.1.07.003.0796-2015 Входной контроль реагентов, применяемых на атомных электростанциях с реактором большой мощности канальным. Методики измерений;
- МР 1.1.4.04.1518-2018 Сопоставление результатов измерений показателей химического контроля средствами лабораторного и автоматического контроля. Методические рекомендации;
- MT 1.1.4.02.002.1283-2017 Входной контроль активированного угля и перлита на атомных станциях. Методики измерений;
- OTT 1.1.8.07.1181-2016 Входной контроль реагентов, применяемых на атомных электростанциях. Общие технические требования;
- ТРУ 1.1.3.08.1341-2017 Обеспечение качества измерений в химических лабораториях атомных станций. Типовое руководство».
 - 3 В разделе 4:
 - 3.1 Пункт 4.1 изложить в новой редакции:
 - «4.1 В соответствии с РБ-002, ВХР должен:
- способствовать обеспечению целостности физических барьеров (оболочек твэлов и границ контура теплоносителя реактора);
- обеспечивать коррозионную стойкость конструкционных материалов оборудования и трубопроводов систем, важных для безопасности в течение всего срока эксплуатации энергоблока АЭС путём минимизации коррозионных и коррозионно-эрозионных процессов при всех режимах эксплуатации;
- обеспечивать минимальное количество отложений на поверхностях твэлов, оборудования и трубопроводов систем АЭС, важных для безопасности;
- способствовать предотвращению накопления горючих газов в оборудовании и трубопроводах систем АЭС во взрывоопасных концентрациях;
- способствовать снижению до разумно достижимого уровня радиационного воздействия на персонал, вызванного активированными продуктами коррозии, образующими отложения на поверхностях оборудования и трубопроводов АЭС;

- способствовать ограничению радиационного воздействия на персонал и население при авариях, сопровождающихся выходом радионуклидов йода в помещения АЭС и окружающую среду.».
 - 3.2 Пункт 4.8 изложить в новой редакции:
- «4.8 Нарушением ВХР КМПЦ и контура СУЗ являются отклонения одного или нескольких нормируемых показателей качества от величины (диапазона) допустимого значения, не устраненные в течение установленного времени.».
 - 3.3 Пункт 4.10 изложить в новой редакции:
- «4.10 Нарушением ВХР КПТ, воды заполнения и подпиточной воды контуров, воды вспомогательных систем важных для безопасности являются отклонения одного или нескольких нормируемых показателей качества от величины (диапазона) допустимого значения, не устраненные в течение 72 часов, начиная с момента их обнаружения.».
 - 4. В разделе 5:
 - 4.1. Таблицу 5.1 изложить в новой редакции:

« Таблица 5.1 - Значения показателей качества теплоносителя КМПЦ, конденсата после конденсатоочистки, питательной воды, воды контура СУЗ, воды заполнения и подпиточной воды контуров в энергетическом режиме работы энергоблока

	Значения показателей качества									
Наименование показателя	Вода КМПЦ		Конденсат после конденсатоочистки		Питательная вода		Вода контура СУЗ		Вода заполнения и подпиточная вода контуров	
	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические
1 Удельная электрическая проводимость, мкСм/см, не более	0,3	-	0,1	-	0,1	-	-		-	1,3
2 Водородный показатель рН	-	От 6,5 до 8,0 вкл.	-	-	-	-	От 4,5 до 6,5 вкл.	-	-	От 5,5 до 7,2 вкл.
3 Массовая концентрация меди, мкг/дм ³ , не более	10		-	2	-	2	-	-	-	-
4 Массовая концентрация хлорид - ионов, мкг/дм ³ , не более	20	-	-	2	_	2	20	-	10	-
5 Массовая концентрация сульфат - ионов, мкг/дм ³ ,	20			2		2		50		10
не более 6 Массовая концентрация нитрат - ионов, мкг/дм ³ , не более	30	15	-	2		2	-	50 1500		5
7 Массовая концентрация растворенного кислорода, мкг/дм³, не более		_	-	50	20	_	_	-	-	-
8 Массовая концентрация кремниевой кислоты, мкг/дм ³ , не более	•	200	-	-		-	_	•	-	-
9 Массовая концентрация железа, мкг/дм ³ , не более	-	10	•	-	-	5	-	5	-	-
10 Массовая концентрация натрия, мкг/дм ³ , не более	_	20	-	2		2	_	-	10	-

Окончание таблицы 5.1

				31	начения показа	ателей качест	ва			
Наименование показателя	Вода Н	СМПЦ	Конденсат после конденсатоочистки		Питательная вода		Вода контура СУЗ		Вода заполнения и подпиточная вода контуров	
	норми- руемые	норми- руемые	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические	норми- руемые	диагнос- тические
11 Массовая концентрация нефтепродуктов, мкг/дм ³ , не более	_		_	_	_	20	_	_	_	100
12 Массовая концентрация алюминия, мкг/дм ³ , не более	-	-	-	-	-	-	_	15	-	-
13 Удельная активность радионуклидов, Бк/дм ³ , не более для ⁵⁹ Fe; для ⁵⁴ Mn, ⁵⁸ Co, ⁶⁰ Co; для ⁹⁵ Zr, ⁹⁵ Nb; для ⁵¹ Cr; для ²⁴ Na	-	4×10 ⁴ 5×10 ⁴ 4×10 ⁵ 6×10 ⁵ 1×10 ⁶	-	-	-	-	_	- - 2×10 ⁵ 4×10 ⁵	-	-
14 Массовая концентрация ООУ, мкг/дм ³ , не более		*	<u>-</u>	-	-	_		-	-	500

Примечания

СМО АЭС – не более 0,20 мкСм/см;

КУР АЭС - не более 0,25 мкСм/см;

ЛЕН АЭС - не более 0,40 мкСм/см.

При увеличении удельной электрической проводимости конденсата турбин до указанного значения принять оперативные меры по поиску и устранению присосов охлаждающей воды в конденсаторах турбин.

¹ Нормируемый показатель "Массовая концентрация растворённого кислорода в питательной воде" определять после деаэраторов.

² При выполнении частичной разгрузки и дальнейшем наборе мощности энергоблока допускается повышение массовой концентрации растворенного кислорода в питательной воде до 50 мкг/дм³.

³ Водородный показатель рН определять при удельной электрической проводимости более 0,3 мкСм/см.

⁴ Предельно допустимую величину присосов охлаждающей воды в конденсаторах турбин определять по удельной электрической проводимости конденсата турбин на напоре конденсатных насосов первого подъёма. В зависимости от качества охлаждающей воды удельная электрическая проводимость должна быть для:

4.2. Таблицу 5.2 изложить в новой редакции:

« Таблица 5.2 - Уровни отклонений нормируемых показателей качества воды КМПШ

	Значения показателей качества Уровни отклонений					
Наименование						
показателя	первый	второй	третий			
1 Удельная электрическая проводимость, мкСм/см	0,3<χ≤1,0	1,0 <x<3,0< td=""><td>χ≥3,0</td></x<3,0<>	χ≥3,0			
2 Массовая концентрация хлорид- ионов, мкг/дм ³	20 <cl≤50< td=""><td>50<cl<100< td=""><td>Cl≥100</td></cl<100<></td></cl≤50<>	50 <cl<100< td=""><td>Cl≥100</td></cl<100<>	Cl≥100			
3 Массовая концентрация меди, мкг/дм ³	_10 <cu≤20< td=""><td>20<cu<50< td=""><td>Cu≥50</td></cu<50<></td></cu≤20<>	20 <cu<50< td=""><td>Cu≥50</td></cu<50<>	Cu≥50			
4 Массовая концентрация сульфат- ионов, мкг/дм ³	30 <so<sub>4 ≤70</so<sub>	70 <so<sub>4 <100</so<sub>	SO₄≥100			

- 4.3. Подпункт 5.1.2.3 изложить в новой редакции:
- «5.1.2.3 Эксплуатационные ограничения и действия персонала при отклонениях показателей качества воды КМПЦ и воды контура СУЗ:

а) первый уровень отклонений:

При отклонении одного или нескольких нормируемых показателей качества воды КМПЦ в пределах первого уровня после проверки и подтверждения отклонения допустимое время работы реактора на уровне мощности более $50 \% N_{\scriptscriptstyle T}^{\scriptscriptstyle {\scriptscriptstyle HOM}}$ не должно превышать 7 суток. При невозможности в течение 7 суток выявить причины и устранить отклонения нормируемых показателей необходимо снизить мощность реактора до значения не более 50 % $N_{\scriptscriptstyle T}^{\scriptscriptstyle \ HOM}$. Допустимое время работы реактора на данном уровне мощности не должно превышать 72 часа. При невозможности в течение 72 часов выявить причины и устранить отклонения необходимо заглушить реактор нормируемых показателей выполнить расхолаживание реактора и КМПЦ. Последующий подъем мощности реактора возможен после устранения причин отклонения;

б) второй уровень отклонений:

При отклонении одного или нескольких нормируемых показателей качества воды КМПЦ в пределах второго уровня после проверки и подтверждения отклонения не более чем через 4 часа снизить мощность реактора до значения не более $50 \% N_{\rm T}^{\rm HOM}$. Допустимое время работы реактора на данном уровне мощности не должно превышать 24 часа. При невозможности в течение 24 часов выявить

причины и устранить отклонения нормируемых показателей необходимо заглушить реактор и выполнить расхолаживание реактора и КМПЦ. Последующий подъем мощности реактора возможен после устранения причин отклонения.

При отклонении одного или нескольких нормируемых показателей качества воды контура СУЗ в пределах второго уровня после проверки и подтверждения отклонения и невозможности в течение 72 часов выявить причины и устранить отклонения нормируемых показателей необходимо заглушить реактор и выполнить расхолаживание реактора и КМПЦ. Последующий подъем мощности реактора возможен после устранения причин отклонения;

в) третий уровень отклонений:

При отклонении одного или нескольких нормируемых показателей качества воды КМПЦ и воды контура СУЗ в пределах третьего уровня после проверки и подтверждения отклонения не более чем через 4 часа необходимо заглушить реактор и выполнить расхолаживание реактора и КМПЦ. Последующий подъем мощности реактора возможен после устранения причин отклонения.».

4.4 Таблицу 5.9 изложить в новой редакции:

«Таблица 5.9 - Значения показателей качества воды КМПЦ при подготовке энергоблока к пуску, разогреве КМПЦ до номинальных параметров и подъёме мощности реактора до МКУ

Наименование	Значения пок	азателей качества
показателя	нормируемые	диагностические
1 Водородный показатель рН	-	От 5,5 до 8,0 вкл.
2 Удельная электрическая проводимость, мкСм/см, не более	1,0	-
3 Массовая концентрация хлорид-ионов, мкг/дм ³ , не более	50	-
4 Массовая концентрация сульфат-ионов, мкг/дм ³ , не более	70	-
5 Массовая концентрация нитрат-ионов, мкг/дм ³ , не более	-	40
6 Массовая концентрация натрия, мкг/дм ³ , не более	-	50
7 Массовая концентрация нефтепродуктов, мкг/дм ³ , не более	-	100
8 Массовая концентрация кремниевой кислоты, мкг/дм ³ , не более		500

- 4.5. Подпункт 5.2.2.2 дополнить новым (седьмым) перечислением:
- \sim массовая концентрация сульфат-ионов в теплоносителе КМПЦ не более 70 мкг/дм³.».
 - 5. В разделе 7:
 - 5.1 Пункт 7.3 изложить в новой редакции:
- «7.3 Техническое обеспечение системы химического контроля включает комплексы автоматических и лабораторных средств измерения, вспомогательных устройства и средств вычислительной техники. Технические характеристики и показатели надежности средств измерений должны соответствовать требованиям ОТТ 1.1.8.07.1141. Лабораторный химический анализ должен выполняться в соответствии с СТО 1.1.1.07.003.0252.».
 - 5.2. Пункт 7.4 изложить в новой редакции:
- «7.4 Показания средств измерений АХК должны проверяться на воспроизводимость в соответствии с требованиями МР 1.1.4.04.1518. Контроль воспроизводимости показаний средств измерений АХК должен соответствовать требованиям ТРУ 1.1.3.08.1341.».
 - 6. В разделе 9:
 - 6.1. Пункт 9.4 изложить в новой редакции:
- «9.4 В соответствии с требованием ОТТ 1.1.8.07.1181 в химических реагентах и их растворах определяют содержание активного вещества и их нежелательные примеси по методикам СТО 1.1.1.07.003.0796.».
 - 6.2 Пункт 9.6 изложить в новой редакции:
- «9.6 Для решения вопроса об использовании химических реагентов для дезактиваций, химических промывок и т. д., не указанных в п. 9.1 и в ОТТ 1.1.8.07.1181, необходимо получить заключение и рекомендации ВНИИАЭС.».
 - 6.3 Раздел 9 дополнить новым пунктом в следующей редакции:
- «9.12 Входной контроль качества угля активного древесного дробленого и фильтроперлита проводят по МТ 1.1.4.02.002.1283.».

7. В разделе 8:

7.1 В таблице 8.1 восьмую строку изложить в новой редакции:

((
8 Полная статическая		1,15 (гелевые)	1,15 (гелевые)	1.10 (paranya)			
обменная емкость,	1,3	0,8	0,8	1,10 (гелевые)	1,10	1,10	ĺ
ммоль/с $м^3$, не менее		(макропористые)	(макропористые	0,8 (макропористые			

7.2 В таблице 8.2 восьмую строку изложить в новой редакции:

((
8 Полная статическая								
обменная емкость,								
ммоль/см 3 , не менее:			5 1					
- слабокислотные;	4,0 (гелевые)							
	3,5 (макропористые)							
							!	
- сильнокислотные	1,8 (гелевые)	1,8 (гелевые)	1,8 (гелевые)	+	1,8 (гелевые)	1,8	1,8	
	1,7 (макропористые)	1,7 (макропористые)	1,7 (макропористые))	1,7 (макропористые)			

».

Лист согласования

Изменение №1 к СТО 1.1.1.02.013.0715-2016 «Водно-химический режим основного технологического контура и вспомогательных систем атомных электростанций с реакторами РБМК-1000. Нормы качества рабочей среды и средства их обеспечения»

Первый заместитель директора по производству и эксплуатации АЭС-директор Департамента по эксплуатации АЭС и управления ядерным топливом

Заместитель директора Департамента по эксплуатации АЭС и управления ядерным топливом — руководитель Управления по эксплуатации АЭС с канальными и быстрыми реакторами

О.Г. Черников

А.А. Быстриков

Sufant

Лист согласования

Изменение №1 к СТО 1.1.1.02.013.0715-2016 «Водно-химический режим основного технологического контура и вспомогательных систем атомных электростанций с реакторами РБМК-1000. Нормы качества рабочей среды и средства их обеспечения»

Главный конструктор ЭКРУ AO «НИКИЭТ»	№ 240-02/1610 от 15.02.2019 A	.В. Слободчиков
Заместитель директора по проектированию и реконструкции АЭС с БН и РБМК АО «АТОМПРОЕКТ»	№ 46-1.2-8.311C/2006 от 30.10.2018	67 А.С. Кузин
Директор московского проектного института АО «Атомэнергопроект»	№ 02-01/27718/930-24 от 31.10.2018	42 Е.Б. Мишин
Заместитель директора ВНИИАЭС-НТП, директор Отделения опыта эксплуатации	№ 32-22/7248 от 06.11.2018	С.С. Петров
Главный инженер филиала АО «Концерн Росэнергоатом» «Курская атомная станция»	№ 9/Ф06-1/1/6535-вн от 07.11.201	А.В. Увакин
Главный инженер филиала АО «Концерн Росэнергоатом» «Ленинградская атомная станция»	№ 9/Ф09/7210-вн от 01.11.2018	К.Г. Кудрявцев
Главный инженер филиала АО «Концерн Росэнергоатом» «Смоленская атомная станция»	№ 9/Ф08/01/3267-вн от 07.11.2018	А.Ю. Лещенко

Лист визирования

Изменение №1 к СТО 1.1.1.02.013.0715-2016 «Водно-химический режим основного технологического контура и вспомогательных систем атомных электростанций с реакторами РБМК-1000. Нормы качества рабочей среды и средства их обеспечения»

Директор Технологического филиала

АО «Концерн Росэнергоатом»

Начальник отдела ВЭОЯТ Технологического филиала AO «Концерн Росэнергоатом»

С.А. Карпутов

К.А. Горелов