АКЦИОНЕРНОЕ ОБЩЕСТВО «РАДИЕВЫЙ ИНСТИТУТ ИМЕНИ В.Г. ХЛОПИНА» (АО «Радиевый институт им. В.Г. Хлопина»)

УТВЕРЖДАЮ
Генеральный директор
(должность)
Вергазов К.Ю.
(Ф.И.О.)
ДОКУМЕНТ ПОДПИСАН
ЭЛЕКТРОННОЙ ПОДПИСЬЮ
СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП
Сертификат: 02са0с8400bcb0f58341e7316b94299d33
Владелец: Вергазов Константин Юрьевич
Действителен с 16.11.2023 по 16.02.2025
(подпись руководителя организации)
« » 20 г.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

14.02.2024 No 217/51-T3

на выполнение научно-исследовательской работы по теме: «Разработка программы и методики химической конверсии борной кислоты и оксида бора в конечные продукты потребления — карбид бора и аморфный бор»

ПЕРЕЧЕНЬ видов материалов на основе справочника ОКДП2, для закупки которых применяется настоящее типовое техническое задание

Код	Вид материала		
72.19.29.190	Услуги (работы), связанные с научными исследованиями и		
	экспериментальными разработками в области технических наук		
	и в области технологий, прочие, не включенные в другие		
	группировки, кроме биотехнологии		

СОДЕРЖАНИЕ

РАЗДЕЛ 1. НАИМЕНОВАНИЕ РАБОТЫ	4
РАЗДЕЛ 2. ЦЕЛЬ И ЗАДАЧИ РАБОТЫ	4
Подраздел 2.1. Выбор направлений исследований	4
Подраздел 2.2. Цель и задачи работы	6
Подраздел 2.3. Стадийность	6
РАЗДЕЛ 3. ОПИСАНИЕ РАБОТ	7
РАЗДЕЛ 4. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ	8
Подраздел 4.1. Исходные данные	8
Подраздел 4.2. Прочие материалы	8
РАЗДЕЛ 5. ТРЕБОВАНИЯ К ТЕХНИЧЕСКИМ РЕЗУЛЬТАТАМ РАБОТЫ	8
Подраздел 5.1. Основные требования к выполнению работы	8
Подраздел 5.2. Внедрение результатов работы	9
Подраздел 5.3. Используемая нормативная документация	9
РАЗДЕЛ 6. ТРЕБОВАНИЯ И УСЛОВИЯ К РАЗРАБОТКЕ	
ПРИРОДООХРАННЫХ МЕР И МЕРОПРИЯТИЙ	10
РАЗДЕЛ 7. ТРЕБОВАНИЯ К КАЧЕСТВУ ВЫПОЛНЕНИЯ РАБОТ	10
РАЗДЕЛ 8. ТРЕБОВАНИЕ К СРОКУ (ИНТЕРВАЛУ) ВЫПОЛНЕНИЯ РАБС	
РАЗДЕЛ 9. ПОРЯДОК ПРИЕМКИ	11
Подраздел 9.1. Требования к документации для приемки	11
Подраздел 9.2. Порядок рассмотрения и приемки результатов работы	12
РАЗДЕЛ 10. ТРЕБОВАНИЯ К ОТЧЕТНОСТИ	12
Подраздел 10.1. Отчетные материалы	
Подраздел 10.2. Формат отчетной документации	
РАЗДЕЛ 11. ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ	13

РАЗДЕЛ 1. НАИМЕНОВАНИЕ РАБОТЫ

Разработка программы и методики химической конверсии борной кислоты и оксида бора в конечные продукты потребления — карбид бора и аморфный бор.

РАЗДЕЛ 2. ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Подраздел 2.1. Выбор направлений исследований

Изотоп бора ¹⁰В, входящий в состав химического элемента бор наряду с ^{11}B соотношении 1:4. обладает уникальным изотопом эффективного нейтронов $(\sim 3.8 \cdot 10^3)$ сечения захвата Барн). материалы, содержащие изотоп бора-10 весьма востребованы в современной атомной энергетике и радиационной технике: они используются в стержнях управления и защиты (СУЗ) ядерных реакторов на быстрых нейтронах в виде композиционного материала на основе карбида бора и оксида алюминия, в качестве добавки в первый контур охлаждения реакторов в составе борной кислоты для компенсации выгорания стержней управления и защиты, для производства нейтронопоглощающих стальных сплавов контейнеров для перевозки и хранения радиоактивных материалов и военной техники.

Развитие атомной энергетики и радиационной техники предполагает эффективное управление нейтронными потоками и, как следствие, рост потребления бора-10 в количестве до 1–2 тыс. тонн ежегодно во второй половине 2020-х годов.

В Российской Федерации потребление бора-10 составляло около 200 кг в год (2010–2018 гг.) с увеличением до 1000 кг в год резким ростом в период (2019–2020 гг.) – порядка и предполагается дальнейший рост потребления. При этом Российская Федерация не имеет собственного крупнотоннажного производства бора-10; имеющееся на АО «Производственное объединение «Электрохимический завод»» обогащение изотопов методом ультрацентрифугирования газов характеризуется длительностью производственного цикла и высокой стоимостью продукции.

Среди известных методов изотопного обогащения следует отметить применявшиеся в СССР методы ректификации и химического изотопного обмена с использованием галогенидов бора. Так как естественное содержание целевого изотопа бор-10 в природной смеси составляет около 20 %, для снижения стоимости изотопно обогащенной продукции представляет интерес разделения комбинация различных методов изотопов, например химического изотопного обмена и центробежного метода (патент РФ № 2777556). Перспективным направлением исследований является изучение разделения изотопов бора в составе борной кислоты и ее производных при равновесии жидкость-жидкость в экстракционном процессе (патент РФ № 2697447). Для экстракционного разделения предложено использовать систему «водный раствор борной и винной кислот – три-*н*-октиламин в *о*-ксилоле», бор-10 концентрируется органической В фазе, концентраций изотопа бор-10 в равновесных фазах зависит от концентрации борной кислоты в исходном растворе (Журн. физ. химии, 2022, т.96, №2).

Согласно разработанной в рамках выполнения НИОКР по теме «Разработка методов химической конверсии продукта экстракционного выделения изотопа бор-10 (борной кислоты) в исходное сырье (трихлорид бора и трифторид бора) для процесса лазерного обогащения бора» методике для выделения борной кислоты из рабочей смеси используется комбинированный процесс этерификации борной кислоты и гидролиза метилового эфира борной кислоты с получением в качестве продукта борной кислоты, обогащенной по изотопу бор-10.

В атомной промышленности изотопно обогащенный бор-10 применяется в виде аморфного порошка бора и карбида бора, поэтому актуальной является задача эффективной конверсии борной кислоты в указанные продукты. Технология переработки изотопно обогащенных веществ вследствие их высокой стоимости должна включать в себя минимально возможное число стадий с минимальными потерями.

Для получения бора карбида бора нашли применение металлотермическое и карботермическое восстановление оксида бора и борной кислоты при повышенной температуре (~1200 К при получении бора, $\sim 2000~{\rm K}$ при получении ${\rm B_4C}$). Для восстановления до простого вещества применяют магний или другие активные металлы, при синтезе карбида бора предпочтение отдается углероду, так как в этом случае исключается необходимость удаления побочных продуктов. Недостатком получения карбида бора из оксида бора и углерода является проведение синтеза при повышенной температуре и длительность процесса.

Реализация процессов требует конверсии борной кислоты в оксид бора, сепарации путем отмывки растворами реагентов продуктов реакции. Значение практического выхода бора, полученное в различных исследованиях, варьируется от 50 % до 99 %. Также следует отметить различие по размеру частиц получаемого бора. Это может указывать на то, что эффективность процесса восстановления, значение практического выхода и размер частиц продукта может зависеть от методики подготовки шихты, условий процессов восстановления соединений бора и выделения целевого продукта.

Высокая температура проведения восстановления оксида бора может приводить к заметному загрязнению получаемого продукта примесями из материала аппаратуры и вследствие протекания побочных реакций. Согласно ТУ 1-92-154-90 суммарное содержание примесей Na, Mg, Al, K, Ca, Si, Mn, Cr, Zn, Fe, Ni, Cu, Sn, Pb, Cd, Ba, W, Hg, Bi в аморфном боре марки Б-99В не должно превышать 0.1 масс. %. Также при повышенной температуре возможно протекание процессов сублимации, испарения борсодержащих веществ и их потере.

Для конверсии борной кислоты и оксида бора в карбид бора и аморфный бор выбрана схема, состоящая из 3-х стадий:

1) Получение оксида бора из борной кислоты.

Полученный оксид бора применяется для высокотемпературного получения карбида бора и аморфного бора.

- 2) Получение карбида бора из оксида бора.
- 3) Получение аморфного бора из оксида бора.

Подраздел 2.2. Цель и задачи работы

Цель работы: Разработка программы и методики химической конверсии борной кислоты и оксида бора в конечные продукты потребления — карбид бора и аморфный бор

Экспериментальная отработка технологии включает изготовление установок синтеза оксида бора, аморфного бора и карбида бора, отработки технологического режима процессов и получение образцов карбида бора и аморфного бора.

Задачи работы:

- 1. Разработка программы и методики химической конверсии и лабораторной технологии получения оксида бора из борной кислоты.
- 2. Разработка программы и методики химической конверсии и лабораторной технологии получения карбида бора из оксида бора.
- 3. Разработка программы и методики химической конверсии и лабораторной технологии получения аморфного бора из оксида бора.
- 4. Изготовление образцов карбида бора и бора аморфного и аналитическое подтверждение составов полученных образцов.

Подраздел 2.3. Стадийность Дата начала Дата Содержание No Результаты работ выполнения окончания работы работ работ Разработка программы и методики химической конверсии борной кислоты и оксида бора в конечные продукты потребления – карбид бора и аморфный бор Разработка ПиМ химической ПиМ химической 1.1 конверсии борной конверсии борной кислоты кислоты в оксид в оксид бора бора Лабораторная технология получения оксида бора из Дата подписания Не позднее Разработка борной кислоты с выходом 15.10.2024 договора лабораторной не менее 90% и технологии 1.2 содержанием основного получения оксида вещества не менее 98,0 %. бора из борной Лабораторный кислоты технологический регламент. Разработка ПиМ ПиМ химической химической 1.3 конверсии оксида бора в конверсии оксида Дата подписания Не позднее карбид бора бора в карбид бора 15.10.2024 договора Разработка Лабораторная технология 1.4 получения карбида бора из лабораторной оксида бора с технологии

1.5	получения карбида бора из оксида бора Изготовление образца карбида	содержанием основного вещества не менее 98,0 %. Лабораторный технологический регламент. Образец карбида бора массой не менее 1 г.		
	бора	Аналитическое подтверждение состава		
1.6	Разработка ПиМ химической конверсии оксида бора в аморфный бор	ПиМ химической конверсии оксида бора в аморфный бор		
1.7	Разработка лабораторной технологии получения аморфного бора из оксида бора	Лабораторная технология получения аморфного бора из оксида бора с содержанием основного вещества не менее 98,0 %. Лабораторный технологический регламент.	Дата подписания договора	Не позднее 15.10.2024
1.8	Изготовление образца аморфного бора	Образец аморфного бора массой не менее 1 г. Аналитическое подтверждение состава		
1.9	Разработка ИД для разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты	Исходные данные для разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты производительностью 20 кг карбида бора/год и 20 кг аморфного бора/год.	Дата подписания договора	Не позднее 15.10.2024

РАЗДЕЛ 3. ОПИСАНИЕ РАБОТ

Работа ведется по трем направлениям:

- 1. Разработка лабораторной технологии получения оксида бора из борной кислоты;
 - 2. Разработка лабораторной технологии получения аморфного бора;
 - 3. Разработка лабораторной технологии получения карбида бора.
- В качестве исходного сырья используется борная кислота и оксид бора. Работы по каждому из направлений включают следующие этапы:
- 1. Разработка программы и методики химической конверсии. Подготовка отчета в соответствии с ПиМ;

2. Разработка лабораторной технологии. Изготовление образцов карбида бора и бора аморфного. Аналитическое подтверждение состава образцов;

По результатам проведения научно-исследовательской работы оформляется Отчет о НИР.

РАЗДЕЛ 4. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ

Подраздел 4.1. Исходные данные

Исходные данные для проведения работы приведены в Подразделе 2.1. Выбор направлений исследований настоящего Технического задания.

Подраздел 4.2. Прочие материалы

В ходе выполнения настоящей работы Исполнителю по официальному запросу (с раскрытием необходимости предоставления сведений) могут быть предоставлены ранее полученные в АО «Радиевый институт им. В.Г. Хлопина» результаты работ, имеющие отношение к настоящему объекту исследований.

РАЗДЕЛ 5. ТРЕБОВАНИЯ К ТЕХНИЧЕСКИМ РЕЗУЛЬТАТАМ РАБОТЫ

Подраздел 5.1. Основные требования к выполнению работы

Работа должна выполняться:

- на современном научно-техническом уровне;
- в соответствии с Единым отраслевым порядком формирования, реализации и финансирования Единого отраслевого тематического плана НИОКР Госкорпорации «Росатом», действующими регламентами Госкорпорации «Росатом», требованиями норм и правил, действующими в Российской Федерации, а также в соответствии с Федеральным законом об использовании атомной энергии от 20.11.1995 г. № 170-ФЗ;
- в соответствии с ГОСТ Р 15.011-96. «Государственный стандарт Российской Федерации. Система разработки и постановки продукции на производство. Патентные исследования»;
- соответствии c Положением организации рассмотрения ПО документированной информации определения возможности ДЛЯ информационном использования в обмене, утверждённым приказом Госкорпорации «Росатом» от 25.06.2002 № 313, и Единой политикой защиты коммерческой утверждённой тайны атомной отрасли, приказом Госкорпорации «Росатом» от 11.11.2015 №1/1065-П, исполнитель не позднее, чем за 20 дней до окончания срока выполнения работы по Календарного плана направляет заказчику (если иное не указано в контракте/договоре) в электронном виде соответствующую документацию.

Разработка должна выполняться при соблюдении требований государственных и отраслевых стандартов, Федеральных норм и правил, правил безопасности, санитарных правил и нормативов, руководств по безопасности.

В процессе выполнения работы должны соблюдаться требования по сохранности режима коммерческой тайны в соответствии с действующими

нормативами Госкорпорации «Росатом».

Исполнитель обязан руководствоваться ОСТ 95 18-2001 «Порядок проведения научно-исследовательских и опытно-конструкторских работ. Основные положения» в части порядка проведения НИР.

Работа должна проходить экспертизу научно-технического или учёного совета Исполнителя.

При выполнении работы также должны соблюдаться следующие общие требования:

- На всех этапах исследований и разработок должно быть обеспечено безопасное обращение (хранение, транспортировка, использование, переработка и т.д.) для всех видов ядерных материалов (радиоактивные вещества и отходы) в соответствии с требованиями и нормами действующего законодательства. Безопасность выполнения работ должна обеспечиваться выполнением инструкций по безопасной эксплуатации оборудования и приборов, а также технологических инструкций, действующих на предприятии Исполнителя.
- ходе выполнения работ Исполнитель может привлекать Соисполнителей. Требования к Соисполнителям аналогичны требованиям к Исполнителю в части работ, выполняемых Соисполнителем. Соисполнитель должен иметь разрешающие документы на выполнение работ, поручаемых Исполнителем. Виды работ, услуг, также объем привлечения Соисполнителей определяются Исполнителем самостоятельно. Соисполнителя Исполнителем производится по письменному согласованию с Заказчиком.

Настоящее техническое задание может быть изменено по согласованному решению сторон. Каждое изменение в техническое задание оформляется уточненным техническим заданием, в котором должны быть приведены полные тексты заменяемых и вновь вносимых положений задания.

Подраздел 5.2. Контролируемые параметры, характеристики и требования к получаемым результатам

№	Содержание	Результаты работ	Контролируемые параметры/
	работы		характеристики/ требования к
			получаемым результатам
1	Разработка ПиМ	Разработана ПиМ	ПиМ должна быть разработана в
	химической	химической	соответствии с ГОСТ 8.563-2009 и
	конверсии	конверсии борной	ГОСТ 2.106-2019 и согласована с
	борной кислоты	кислоты и оксида	Заказчиком путем официальной
	и оксида бора в	бора в конечные	переписки.
	конечные	продукты	Определены параметры и критерии
	продукты	потребления – карбид	достижения параметров, позволяющие
	потребления –	бора и аморфный бор	проводить химическую конверсию
	карбид бора и		борной кислоты и оксида бора в
	аморфный бор		конечные продукты потребления –
			карбид бора и аморфный бор
2	Изготовление	Изготовлены образцы	Изготовление образцов и
	образцов	карбида бора и	аналитическое подтверждение
	карбида бора и	аморфного бора	полученных составов должны быть

методом методом конверсии борной конверсии борной кислоты. Проведено апалитическое подтверждение полученных составов. 3 Разработка дабораторной конверсии борной кислоты и технологии химической конверсии борной кислоты и оксида бора в конечные продукты потребления даморфной бор. 4 Разработка идд для разработки технического задания на разработки технического задания на разработки технического задания на разработки и изготовление опытных установок для получения карбида бора и аморфного бора и заморфного бора и					
3 Разработка дабораторной технологии химической конверсии борной кислоты и оксида бора в конесчные продукты потребления — карбид бора и аморфный бор. 4 4 4 4 4 4 4 4 4		методом химической конверсии	конверсии борной кислоты. Проведено аналитическое подтверждение	проведены в соответствии с ПиМ	
Разработка ИД для разработки технического задания на разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты Подраздел 5.3. Внедрение разработки и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты Подраздел 5.3. Внедрение разработанные Исполнителем ПиМ и лабораторные технологии могут быть использованы Заказчиком для разработки и изготовления лабораторных и опытно-промышленных установок для дальнейших исследований и постановки на производство. Подраздел 5.3. Используемая нормативного документа Исходные данные для дальнейшей технического задания на создание опытных установок. ИД должны включать в себя 1. Аппаратурно-технологического оборудования с указанием технических характеристик, материалы изтотовления нового оборудования, общие данные о конструктиве. 2) Описание технологического оборудования, общие данные о конструктиве. 2) Описание технологического оборудования, общие данные о конструктиве. 2) Описание технологического оборудования, общие данные о конструктиве. 3) Общее описание аналитического контроля 4) Исходное сырье 5) Конечный продукт получения и изтотовления лабораторных и опытно-промышленных установок для дальнейших исследований и постановки на производство. Подраздел 5.3. Используемая нормативная документация Состав, содержание, порядок разработки должны соответствовать требованиям действующей нормативной документа	3	лабораторной технологии химической конверсии борной кислоты и оксида бора в конечные продукты потребления – карбид бора и	Разработана лабораторная технология химической конверсии борной кислоты и оксида бора в конечные продукты потребления — карбид бора и аморфный	определен выход продукта, математический баланс, потери при химической конверсии борной кислоты и оксида бора в конечные продукты потребления – карбид бора	
Подраздел 5.3. Внедрение результатов работы После завершения НИР разработанные Исполнителем ПиМ и лабораторные технологии могут быть использованы Заказчиком для разработки и изготовления лабораторных и опытно-промышленных установок для дальнейших исследований и постановки на производство. Подраздел 5.3. Используемая нормативная документация Состав, содержание, порядок разработки должны соответствовать требованиям действующей нормативной документации. Обозначение Наименование нормативного документа нормативного документа	4	для разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной	разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты производительностью 20 кг карбида бора/год и 20 кг	разработки технического задания на создание опытных установок. ИД должны включать в себя 1) Аппаратурно-технологическая схема с технологическими потоками их параметрами Перечень основного технологического оборудования с указанием технических характеристик, материалы изготовления нового оборудования, общие данные о конструктиве. 2) Описание технологического процесса с привязкой к аппаратурной схеме 3) Общее описание аналитического контроля 4) Исходное сырье	
После завершения НИР разработанные Исполнителем ПиМ и лабораторные технологии могут быть использованы Заказчиком для разработки и изготовления лабораторных и опытно-промышленных установок для дальнейших исследований и постановки на производство. Подраздел 5.3. Используемая нормативная документация Состав, содержание, порядок разработки должны соответствовать требованиям действующей нормативной документации. Обозначение Наименование нормативного документа нормативного документа					
	лабор разра устан С треб	осле завершени оаторные техно ботки и изго овок для дальней Подраздел з остав, содержан ованиям действу бозначение рмативного	ия НИР разработ погии могут быть товления лаборатор йших исследований и 5.3. Используемая но ние, порядок разратющей нормативной д	анные Исполнителем ПиМ и использованы Заказчиком для рных и опытно-промышленных постановки на производство. рмативная документация аботки должны соответствовать цокументации.	
			Система стандартов б	езопасности труда. Пожарная	

	безопасность. Общие требования.	
ГОСТ 12.1.030-81	Электробезопасность. Защитное заземление, зануление.	
ГОСТ 27883-88	Средства измерения и управления технологическими	
	процессами. Надежность. Общие требования и методы	
	испытаний	
СП	Пожарная охрана предприятии. Общие требования.	
232.1311500.2015		
ПП РФ от	Правила противопожарного режима в Российской	
16.09.2020 №1479	Федерации	

РАЗДЕЛ 6. ТРЕБОВАНИЯ И УСЛОВИЯ К РАЗРАБОТКЕ ПРИРОДООХРАННЫХ МЕР И МЕРОПРИЯТИЙ

- 6.1. Используемые в ходе выполнения НИР методы не должны нарушать действующего законодательства РФ в области охраны окружающей среды.
- 6.2. Дополнительные требования и условия к разработке природоохранных мер и мероприятий могут быть установлены (устанавливаются) в ходе выполнения работ.

РАЗДЕЛ 7. ТРЕБОВАНИЯ К КАЧЕСТВУ ВЫПОЛНЕНИЯ РАБОТ

Предоставляемые результаты должны быть экспериментально или теоретически обоснованы, соответствовать требованиям нормативнотехнической документации РФ.

Отчётная документация должна быть оформлена соответствии с ГОСТ 7.32-2017 «Система стандартов по информации, библиотечному и издательскому делу. Отчёт о научно-исследовательской работе. Структура и правила оформления».

Стандарты предприятия должны быть разработаны в соответствии с действующими законами, ГОСТами и другими нормативно-техническими документами Российской Федерации и отрасли и обеспечивать обоснованность и достоверность передаваемой информации.

Конструкторская и технологическая документация должна разрабатываться с учётом требований национальных и межгосударственных стандартов ЕСКД, ЕСТД.

Работы должны проводиться в рамках системы качества на основе государственных и международных стандартов в соответствии с

- ГОСТ Р ИСО 9001-2015 (ISO 9001:2015) «Системы менеджмента качества. Требования»;
- ГОСТ Р ИСО 45001-2020 (ISO 45001:2018) «Системы менеджмента безопасности труда и охраны здоровья. Требования и руководство по применению»;
- ГОСТ ИСО 14001-2016 (ISO 14001:2015) «Системы экологического менеджмента. Требования и руководство по применению».

Заказчик имеет право проводить аудиты обеспечения качества при выполнении работ по договору. О дате начала проведения аудита

обеспечения качества Заказчик своевременно уведомляет Исполнителя не менее чем за 10 (десять) дней до проведения аудита. Исполнитель несет ответственность за обеспечение допуска к документации, подтверждающей обеспечение качества при выполнении работ по договору.

РАЗДЕЛ 8. ТРЕБОВАНИЕ К СРОКУ (ИНТЕРВАЛУ) ВЫПОЛНЕНИЯ РАБОТ

В соответствии с п. 2.3.

Начало работ по НИР – дата заключения договора

Окончание работ по НИР – 15.10.2024.

РАЗДЕЛ 9. ПОРЯДОК ПРИЕМКИ

Подраздел 9.1. Требования к документации для приемки

Отчетная документация оформляется в соответствии с принятыми стандартами: ГОСТ 7.32-2017 «Отчет о научно-исследовательской работе. Структура и правила оформления», ЕСКД, а также в соответствии с требованиями заказчика по договору.

Отчетная документация должна быть оформлена в соответствии с требованиями стандарта организации и нормативными документами:

- ГОСТ Р 15.101-2021 «Порядок выполнения научно-исследовательских работ»;
- ГОСТ 7.32-2017 «Межгосударственный стандарт на отчет о научноисследовательской работе. Структура и правила оформления»;

Методики испытаний и испытания оформляются:

- ГОСТ 19.301-79 «Программа и методика испытаний. Требования к содержанию и оформлению»;
 - ГОСТ Р 8.563-2009 «Методики (методы) измерений».

Оформление документации должно соответствовать следующим нормативным актам Госкорпорации «Росатом»:

- ГОСТ 7.32-2017 «Межгосударственный стандарт на отчет о научноисследовательской работе. Структура и правила оформления» с исправлениями Госкорпорации «Росатом».
- Приказ от 31.12.2013 № 1/1486-П «Об утверждении Типового отраслевого порядка обращения с научно-технической документацией, создаваемой в ходе выполнения НИОКР по заказу Госкорпорации «Росатом»;
- Приказ от 30.09.2014 № 1/932-П «О внесении изменений в приказы Госкорпорации «Росатом» от 31.12.2013 № 1/1486-П и от 14.01.2014 № 1/5-П»;
- Приказ от 30.07.2015 № 1/759-П «О внесении изменений в приказ Госкорпорации «Росатом» от 14.01.2014 № 1/5-П.

В случае создания при выполнении работ результата, которому может быть предоставлена правовая охрана как РИД, или получения уведомления работника о создании такого РИД Исполнитель в письменной форме уведомляет Заказчика о создании этого РИД с приложением описания созданного результата и материалов, достаточных для его идентификации,

осуществления (воспроизведения) и обеспечения (оформления) прав Сторон договора на него, обоснования предлагаемого - порядка его использования и рекомендуемой формы правовой охраны.

К акту о передаче Заказчику каждого охраняемого РИД Исполнитель прикладывает соответствующее описание созданного результата и другие материалы, достаточные для его идентификации, осуществления (воспроизведения) и обеспечения (оформления) прав Заказчика на него

На титульные листы отчетной документации (отчеты НИР, техническая/технологическая документация) должны быть внесены отметки о правообладателе объекта авторского права (по ГОСТ 7.0.1-2003).

Подраздел 9.2. Порядок рассмотрения и приемки результатов работы

- 9.2.1. Работа проходит экспертизу научно-технического или учёного совета Исполнителя.
- 9.2.2. Работа принимается комиссией, назначаемой Заказчиком с участием Исполнителя.
- 9.2.3. По окончании этапов и работы в целом Заказчику представляются отчетные материалы.
- 9.2.4. Исполнитель направляет Заказчику документацию с сопроводительным письмом согласно утвержденного перечня направляемой документации.

Перечень научной, технической и другой документации, подлежащей оформлению и сдаче Исполнителем Заказчику по окончании срока действия Договора, изготавливаемой в соответствии с договором, определен техническим заданием и календарным планом.

РАЗДЕЛ 10. ТРЕБОВАНИЯ К ОТЧЕТНОСТИ

Подраздел 10.1. Отчетные материалы

По окончании работы Заказчику представляются следующие отчетные материалы согласно перечня направляемой документации.

- 1. Отчет о НИР;
- 2. Программа и методика химической конверсии борной кислоты в оксид бора;
- 3. Лабораторный технологический регламент получения оксида бора из борной кислоты;
- 4. Программа и методика химической конверсии оксида бора в карбид бора;
- 5. Лабораторный технологический регламент получения карбида бора из оксида бора;
 - 6. Акт наработки карбида бора из оксида бора;
 - 7. Протокол аналитических измерений карбида бора;
- 8. Программа и методика химической конверсии оксида бора в аморфный бор;
- 9. Лабораторный технологический регламент получения аморфного бора из оксида бора;
 - 10. Акт наработки аморфного бора из оксида бора;

- 11. Протокол аналитических измерений аморфного бора;
- 12.ИД для разработки технического задания на разработку и изготовление опытных установок для получения карбида бора и аморфного бора из исходного сырья борной кислоты
 - 13. Акт сдачи-приемки выполненной НИР в 3 экз.

Подраздел 10.2. Формат отчетной документации

- 10.2.1. Исполнитель в соответствии с календарным планом работ направляет Заказчику в трех экземплярах отчётные материалы в бумажном виде и в электронном виде, текстовые материалы в двух форматах на магнитном или оптическом носителе в виде редактируемого файла в формате Word и в виде файла в формате pdf с отсканированными титульными листами с подписями всех уполномоченных лиц.
- 10.2.2. При выполнении и передаче документации на электронном носителе должны соблюдаться требования ГОСТ 2.051 «Состав и структура электронной версии отчетной документации должна быть идентична бумажному оригиналу». Заказчику передается три экземпляра отчетной документации на бумажном носителе и в электронном виде.

РАЗДЕЛ 11. ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

№ п/п	Сокращение	Расшифровка сокращения
1	НИР	Научно-исследовательская работа
2	HTC	Научно-технический совет
3	РИД	Результат интеллектуальной деятельности
4	T3	Техническое задание
5	ПиМ	Программа и методика испытаний и/или
		исследований
6	масс. %	массовый процент
7	ТУ	Технические условия

Начальник отделения

С.А. Кротов